Walmart cracks enterprise AI at scale: Thousands of use cases, one framework

Join the event trusted by enterprise leaders for nearly two decades. VB Transform brings together the people building real enterprise AI strategy. Learn more


Walmart continues to make strides in cracking the code on deploying agentic AI at enterprise scale. Their secret? Treating trust as an engineering requirement, not some compliance checkbox you tick at the end.

During the “Trust in the Algorithm: How Walmart’s Agentic AI Is Redefining Consumer Confidence and Retail Leadership” session at VB Transform 2025, Walmart’s VP of Emerging Technology Desirée Gosby, explained how the retail giant operationalizes thousands of AI use cases. One of the retailer’s primary objectives is to consistently maintain and strengthen customer confidence among its 255 million weekly shoppers.

“We see this as a pretty big inflection point, very similar to the internet,” Gosby told industry analyst Susan Etlinger during Tuesday’s morning session. “It’s as profound in terms of how we’re actually going to operate, how we actually do work.”

The session delivered valuable lessons learned from Walmart’s AI deployment experiences. Implicit throughout the discussion is the retail giant’s continual search for new ways to apply distributed systems architecture principles, thereby avoiding the creation of technical debt.

>>See all our Transform 2025 coverage here<<

Four-stakeholder framework structures AI deployment

Walmart’s AI architecture rejects horizontal platforms for targeted stakeholder solutions. Each group receives purpose-built tools that address specific operational frictions.

Customers engage Sparky for natural language shopping. Field associates get inventory and workflow optimization tools. Merchants access decision-support systems for category management. Sellers receive business integration capabilities. “And then, of course, we’ve got developers, and really, you know, giving them the superpowers and charging them up with, you know, the new agent of tools,” Gosby explained.

“We have hundreds, if not thousands, of different use cases across the company that we’re bringing to life,” Gosby revealed. The scale demands architectural discipline that most enterprises lack.

The segmentation acknowledges the fundamental need of each team in Walmart to have purpose-built tools for their specific jobs. Store associates managing inventory need different tools from merchants analyzing regional trends. Generic platforms fail because they ignore operational reality. Walmart’s specificity drives adoption through relevance, not mandate.

Trust economics are driving AI adoption at Walmart

Walmart discovered that trust is built through value delivery, not just mandatory training programs that associates, at times, question the value of.

Gosby’s example resonated as she explained her mother’s shopping evolution from weekly store visits to COVID-era deliveries, illustrating exactly how natural adoption works. Each step provided an immediate, tangible benefit. No friction, no forced change management, yet the progression happened faster than anyone could have predicted.

“She’s been interacting with AI through that whole time,” Gosby explained. “The fact that she was able to go to the store and get what she wanted, it was on the shelf. AI was used to do that.”

The benefits customers are getting from Walmart’s predictive commerce vision are further reflected in Gosby’s mother’s experiences. “Instead of having to go weekly, figure out what groceries you need to have delivered, what if it just showed up for you automatically?” That’s the essence of predictive commerce and how it delivers value at scale to every Walmart customer.

“If you’re adding value to their lives, helping them remove friction, helping them save money and live better, which is part of our mission, then the trust comes,” Gosby stated. Associates follow the same pattern. When AI actually improves their work, saves them time and helps them excel, adoption happens naturally and trust is earned.

Fashion cycles compress from months to weeks

Walmart’s Trend to Product system quantifies the operational value of AI. The platform synthesizes social media signals, customer behavior and regional patterns to slash product development from months to weeks.

“Trend to Product has gotten us down from months to weeks to getting the right products to our customers,” Gosby revealed. The system creates products in response to real-time demand rather than historical data.

The months-to-weeks compression transforms Walmart’s retail economics. Inventory turns accelerate. Markdown exposure shrinks. Capital efficiency multiplies. The company maintains price leadership while matching any competitor’s speed-to-market capabilities. Every high-velocity category can benefit from using AI to shrink time-to-market and deliver quantifiable gains.

How Walmart uses MCP Protocol to create a scalable agent architecture

Walmart’s approach to agent orchestration draws directly from its hard-won experience with distributed systems. The company uses Model Context Protocol (MCP) to standardize how agents interact with existing services.

“We break down our domains and really looking at how do we wrap those things as MCP protocol, and then exposing those things that we can then start to orchestrate different agents,” Gosby explained. The strategy transforms existing infrastructure rather than replacing it.

The architectural philosophy runs deeper than protocols. “The change that we’re seeing today is very similar to what we’ve seen when we went from monoliths to distributed systems. We don’t want to repeat those mistakes,” Gosby stated.

Gosby outlined the execution requirements: “How do you decompose your domains? What MCP servers should you have? What sort of agent orchestration should you have?” At Walmart, these represent daily operational decisions, not theoretical exercises.

“We’re looking to take our existing infrastructure, break it down, and then recompose it into the agents that we want to be able to build,” Gosby explained. This standardization-first approach enables flexibility. Services built years ago now power agentic experiences through proper abstraction layers.

Merchant expertise becomes enterprise intelligence

Walmart leverages decades of employee knowledge, making it a core component of its growing AI capabilities. The company systematically captures category expertise from thousands of merchants, creating a competitive advantage no digital-first retailer can match.

“We have thousands of merchants who are excellent at what they do. They are experts in the categories that they support,” Gosby explained. “We have a cheese merchant who knows exactly what wine goes or what cheese pairing, but that data isn’t necessarily captured in a structured way.”

AI operationalizes this knowledge. “With the tools that we have, we can capture that expertise that they have and really bring that to bear for our customers,” Gosby said. The application is specific: “When they’re trying to figure out, hey, I need to throw the party, what kind of appetizers should I have?”

The strategic advantage compounds. Decades of merchant expertise become accessible through natural language queries. Digital-first retailers lack this human knowledge foundation. Walmart’s 2.2 million associates represent proprietary intelligence that algorithms cannot synthesize independently.

New metrics measure autonomous success

Walmart pioneers measurement systems designed for autonomous AI rather than human-driven processes. Traditional funnel metrics fail when agents handle end-to-end workflows.

“In an agentic world, we’re starting to work through this, and it’s going to change,” Gosby said. “The metrics around conversion and things like that, those are not going to change, but we’re going to be looking at goal completion.”

The shift reflects operational reality. “Did we actually achieve what is the ultimate goal that our associate, that our customers, are actually solving?” Gosby asked. The question reframes success measurement.

“At the end of the day, it’s a measure of, are we delivering the benefit? Are we delivering the value that we expect, and then working back from there to basically figure out the right metrics?” Gosby explained. Problem resolution matters more than process compliance. How AI is helping customers achieve their goals is prioritized over conversion funnels.

Enterprise lessons from Walmart’s AI transformation

Walmart’s Transform 2025 session delivers actionable intelligence for enterprise AI deployment. The company’s operational approach provides a framework that has been validated at scale.

  • Apply architectural discipline from day one. The shift from monolithic to distributed systems provided Walmart with the lessons it needed to learn to succeed with AI deployments. The key lesson learned is to build proper foundations before scaling and define a systematic approach that prevents expensive rework.
  • Match solutions to specific user needs. One-size-fits-all AI fails every time. Store associates need different tools than merchants. Suppliers require different capabilities than developers. Walmart’s targeted approach drives adoption.
  • Build trust through proven value. Start with clear wins that deliver measurable results. Walmart moved from basic inventory management to predictive commerce step by step. Each success earns insights and knowledge for the next.
  • Turn employee knowledge into enterprise assets. Decades of specialist expertise exists within your organization. Walmart systematically captures merchant intelligence and operationalizes it across 255 million weekly transactions. This institutional knowledge creates competitive advantage no algorithm can replicate from scratch.
  • Measure what matters in autonomous systems. Conversion rates miss the point when AI handles entire workflows. Focus on problem resolution and value delivery. Walmart’s metrics evolved to match operational reality.
  • Standardize before complexity hits. Integration failures killed more projects than bad code ever did. Walmart’s protocol decisions prevent the chaos that derails most AI initiatives. Structure enables speed.

“It always comes back to basics,” Gosby advised. “Take a step back and first understand what problems do you really need to solve for your customers, for our associates. Where is there friction? Where is there manual work that you can now start to think differently about?”

Walmart’s blueprint scales beyond retail

Walmart demonstrates how enterprise AI succeeds through engineering discipline and systematic deployment. The company processes millions of daily transactions across 4,700 stores by treating each stakeholder group as a distinct challenge requiring tailored, real-time solutions.

“It’s permeating everything it is that we do,” Gosby explained. “But at the end of the day, the way that we look at it is we always start with our customers and our members and really understanding how it’s going to impact them.”

Their framework applies across industries. Financial services organizations balancing customer needs with regulatory requirements, healthcare systems coordinating patient care across providers, manufacturers managing complex supply chains are all facing similar multi-stakeholder challenges. Walmart’s approach provides a tested methodology for addressing this complexity.

“Our customers are trying to solve a problem for themselves. Same thing for our associates,” Gosby stated. “Did we actually solve that problem with these new tools?” This focus on problem resolution rather than technology deployment drives measurable outcomes. Walmart’s scale validates the approach for any enterprise ready to move beyond pilot programs.

Similar Posts

  • Get paid faster: How Intuit’s new AI agents help businesses get funds up to 5 days faster and save 12 hours a month with autonomous workflows

    Join the event trusted by enterprise leaders for nearly two decades. VB Transform brings together the people building real enterprise AI strategy. Learn more Intuit has been on a journey over the last several years with generative AI, incorporating the technology as part of its services at QuickBooks, Credit Karma,Turbotax and Mailchimp. Today the company is…

  • RealSense spins out of Intel to scale its stereoscopic imaging technology

    After 14 years of developing inside of semiconductor giant Intel, RealSense is striking out on its own.

    RealSense sells cameras that use stereoscopic imaging, a process that combines two images of the same object from different angles to create depth, enhanced with infrared light. This technology helps machines like robots, drones, and autonomous vehicles have a better perception of the physical world around them. The tech is also used for facial authentication.

    “The common denominator of all of them is they live in the real, physical world,” CEO Nadav Orbach told TechCrunch. “They need to understand the surroundings in 3D and based on that, take and plan actions right in the world. And for that, they need a real-time, high-accuracy ability to understand the surrounding in 3D. And that’s what we do best.”

    Orbach joined Intel back in 2006 as a CPU architect in Israel. He started working on vision technology in 2011 before becoming the general manager of incubation and disruptive innovation in 2022 and moving to San Francisco last year.

    “We knew and understood that 3D perception was going to be big,” Orbach said about the early days of RealSense. “To be honest, we weren’t quite sure in which domain. We tried that across different market segments and different applications, all the way from gesture recognition with computers, phones, until we really found our sweet spot over the years, mostly in robotics.”

    The company works with numerous industries outside of robotics, too. Orbach said they’ve heard from fish farms looking to track the volume inside their pens. Chipotle has also used RealSense cameras, in a partnership with AI restaurant software company PreciTaste, to track when food containers are low.

    RealSense has more than 3,000 customers and has seen a surge in new interest over the last three to four years as AI has improved. With that, the applications for robotics, especially, have scaled.

    Techcrunch event

    Boston, MA
    |
    July 15

    The company realized it may have a better chance keeping up with demand — and scaling itself — if it spun out of Intel and raised its own capital, Orbach said.

    The spinout plans hatched last year and got the approval from former Intel CEO Pat Gelsinger. The company is now independent and raised a $50 million Series A funding round from Intel Capital and other strategic investors to get started on its own.

    “For me, it was exciting, to be honest,” Orbach said. “I’m a veteran executive in the company, but it’s first time that I’m, you know, I was on the other side of the table. It was a very humbling experience for me as a first-time CEO to go and and raise money.”

    RealSense will put the capital toward building out its go-to-market team and making improvements to its technology. The company is particularly focused on improving the tech so it can help improve safety during humans and robot interactions and to improve access control.

    “There is a learning curve of, you know, stepping out,” Orbach said. “I’m extremely excited about that. I’m fortunate to have a very strong team with a lot of people in my team that that have entrepreneurial experience. I feel that with my background, together with with some strong teammates, I think we have the right mix for success. And for me, it’s a dream coming true.”

  • Obvio’s stop sign cameras use AI to root out unsafe drivers

    American streets are incredibly dangerous for pedestrians. A San Carlos, California-based startup called Obvio thinks it can change that by installing cameras at stop signs — a solution the founders also say won’t create a panopticon. 

    That’s a bold claim at a time when other companies like Flock have been criticized for how its license plate-reading cameras have become a crucial tool in an overreaching surveillance state. 

    Obvio founders Ali Rehan and Dhruv Maheshwari believe they can build a big enough business without indulging those worst impulses. They’ve designed the product with surveillance and data-sharing limitations to ensure they can follow through with that claim.

    They’ve found deep pockets willing to believe them, too. The company has just completed a $22 million Series A funding round led by Bain Capital Ventures. Obvio plans to use those funds to expand beyond the first five cities where it’s currently operating in Maryland. 

    Rehan and Maheshwari met while working at Motive, a company that makes dashboard cameras for the trucking industry. While there, Maheshwari told TechCrunch the pair realized “a lot of other normal passenger vehicles are awful drivers.” 

    The founders said they were stunned the more they looked into road safety. Not only were streets and crosswalks getting more dangerous for pedestrians, but in their eyes, the U.S. was also falling behind on enforcement. 

    [embedded content]

    “Most other countries are actually pretty good at this,” Maheshwari said. “They have speed camera technology. They have a good culture of driving safety. The U.S. is actually one of the worst across all the modern nations.”

    Maheshwari and Rehan began studying up on road safety by reading books and attending conferences. They found that people in the industry gravitated toward three general solutions: education, engineering, and enforcement. 

    In their eyes, those approaches were often too separated from each other. It’s hard to quantify the impact of educational efforts. Local officials may try to fix a problematic intersection by, say, installing a roundabout, but that can take years of work and millions of dollars. And law enforcement can’t camp out at every stop sign.

    Rehan and Maheshwari saw promise in combining them. 

    The result is a pylon (often brightly-colored) topped with a solar-powered camera that can be installed near almost any intersection. It’s designed not to blend in — part of the education and awareness aspect — and it’s also carefully engineered to be cheap and easy to install.

    The on-device AI is trained to spot the worst types of stop sign or other infractions. (The company also claims on its website it can catch speeding, crosswalk violations, illegal turns, unsafe lane changes, and even distracted driving.) When one of these things happen, the system matches a car’s license plate to the state’s DMV database. 

    All of that information — the accuracy of the violation, the license plate — is verified by either Obvio staff or contractors before it’s sent to law enforcement, which then has to review the infractions before issuing a citation.

    Obvio gives the tech to municipalities for free and makes money from the citations. Exactly how that citation revenue will get split between Obvio and the governments will vary from place to place, as Maheshwari said regulations about such agreements differ by state.

    That clearly creates an incentive for increasing the number of citations. But Rehan and Maheshwari said they can build a business around stopping the worst offenses across a wide swath of American cities. They also said they want Obvio to remain present in — and responsive to — the communities that use their tech.

    “Automated enforcement should be used in conjunction with community advocacy and community support, it shouldn’t be this camera that you put up that does revenue grab[s] and gotchas,” Maheshwari said. The goal is to “start using these cameras in a way to warn and deter the most egregious drivers [so] you can actually create communitywide support and behavior change.”

    Cities and their citizens “need to trust us,” Maheshwari said. 

    There’s also a technological explanation for why Obvio’s cameras may not become an overpowered surveillance tool for law enforcement beyond their intended use.

    Obvio’s camera pylon records and processes its footage locally. It’s only when a violation is spotted that the footage leaves the device. Otherwise, all other footage of vehicles and pedestrians passing through a given intersection stays on the device for about 12 hours before it gets deleted. (The footage is also technically owned by the municipalities, which have remote access.)

    This doesn’t eliminate the chance that law enforcement will use the footage to surveil citizens in other ways. But it does reduce that chance.

    That focus is what drove Bain Capital Ventures partner Ajay Agarwal to invest in Obvio.

    “Yes, in the short term, you can maximize profits, and erode those values, but I think over time, it will limit the ability of this company to be ubiquitous. It’ll create enemies or create people who don’t want this,” he told TechCrunch. “Great founders are willing to sacrifice entire lines of business, frankly, and lots of revenue, in pursuit of the ultimate mission.”

  • Our first long-duration energy storage partnership

    Electricity powers modern life. And we’re accelerating a wide range of technologies, from enhanced geothermal to advanced nuclear to even fusion technologies, that can enable a future where on-demand electricity needs are met with clean energy, every hour of every day.Today, we’re adding another technology to our portfolio: long duration energy storage (LDES). Through a new long-term partnership with Energy Dome, we plan to support multiple commercial projects globally to deploy their LDES technology.Energy Dome’s novel CO₂ Battery can store excess clean energy and then dispatch it back to the grid for 8-24 hours, bridging the gap between when renewable energy is generated and when it is needed. With this commercial partnership, as well as an investment in the company, we believe these projects can unlock new clean energy for grids where we operate before 2030, helping meet near-term electricity system needs and moving us closer to our 24/7 carbon-free energy goal.By bringing this first-of-a-kind LDES technology to market faster, we aim to rapidly bring its potential to communities everywhere — making reliable, affordable electricity available around the clock and supporting the resilience of grids as they integrate growing amounts of renewable energy sources.Why it’s importantLithium-ion batteries, which typically store and dispatch power for 4 hours or less, have been critical for adding electricity capacity to grids and managing short-term fluctuations in renewable generation — when the sun isn’t shining or the wind isn’t blowing. Google’s support for these shorter-duration batteries has helped the grids we rely on, from Belgium to Nevada, meet peak electricity demand and reduce the need to ramp up fossil fuel power plants.But what if we could store and dispatch clean energy for more than a few hours, or even a full day? Studies by the Electric Power Research Institute show that LDES technologies can cost-effectively integrate a growing volume of renewables onto power systems and contribute to more flexible, reliable grids. The LDES Council estimates that deploying up to 8 terawatts (TW) of LDES by 2040 could result in $540 billion in annual savings globally, thanks in part to their ability to optimize grids.How the technology worksEnergy Dome’s novel approach to energy storage uses carbon dioxide (CO₂) held in a unique dome-shaped battery. When there’s an abundance of renewable energy on the grid, the system uses that power to compress CO₂ gas into a liquid. When the grid needs more clean power, the liquid CO₂ expands back into a hot gas under pressure, creating a powerful force — much like steam escaping a pressure cooker — which spins a turbine. This spinning turbine generates carbon-free energy that can flow directly back into the grid for durations ranging from 8 to 24 hours.Energy Dome has already signed contracts to build commercial scale projects in Italy, the U.S., and India. And their technology has already proven successful, having injected electrons into the Italian grid for more than three years, thanks to their commercial demonstration facility and now with their full-scale 20 megawatt (MW) commercial plant in Sardinia, Italy.Why scale is crucialLDES has the potential to commercialize much faster than some of the other advanced clean energy technologies in our portfolio. This means we can use it in the near term to help the electricity system grow more flexibly and reliably, alongside other tools we’re developing such as data center demand response.By supporting multiple commercial deployments of Energy Dome’s technology globally, we aim to bring this technology to scale faster and at lower costs. Beyond our long-term collaboration with Energy Dome, we plan to support a growing range of LDES technologies under development through both commercial agreements that can catalyze wider market adoption of more mature technologies, like Energy Dome’s, as well as earlier-stage investments.To remove barriers to the deployment and commercialization of LDES and other advanced carbon-free energy technologies, we’re also advocating for clean energy policies, ensuring that energy markets fully value firm, flexible carbon-free technologies, and advancing policy measures that enable infrastructure essential for grid decarbonization and energy security.We’re excited to take this first step with Energy Dome to unlock the full potential of LDES. Our partnership will strengthen grid resilience while enabling us to power our technologies, grow our economies and keep the lights on in our homes with 24/7 clean energy.

Leave a Reply

Your email address will not be published. Required fields are marked *