The hidden scaling cliff that’s about to break your agent rollouts

Join the event trusted by enterprise leaders for nearly two decades. VB Transform brings together the people building real enterprise AI strategy. Learn more


Enterprises that want to build and scale agents also need to embrace another reality: agents aren’t built like other software. 

Agents are “categorically different” in how they’re built, how they operate, and how they’re improved, according to Writer CEO and co-founder May Habib. This means ditching the traditional software development life cycle when dealing with adaptive systems.

“Agents don’t reliably follow rules,” Habib said on Wednesday while on stage at VB Transform. “They are outcome-driven. They interpret. They adapt. And the behavior really only emerges in real-world environments.”

Knowing what works — and what doesn’t work — comes from Habib’s experience helping hundreds of enterprise clients build and scale enterprise-grade agents. According to Habib, more than 350 of the Fortune 1000 are Writer customers, and more than half of the Fortune 500 will be scaling agents with Writer by the end of 2025.

Using non-deterministic tech to produce powerful outputs can even be “really nightmarish,” Habib said — especially when trying to scale agents systemically. Even if enterprise teams can spin up agents without product managers and designers, Habib thinks a “PM mindset” is still needed for collaborating, building, iterating and maintaining agents.

“Unfortunately or fortunately, depending on your perspective, IT is going to be left holding the bag if they don’t lead their business counterparts into that new way of building.”

>>See all our Transform 2025 coverage here<<

Why goal-based agents is the right approach 

One of the shifts in thinking includes understanding the outcome-based nature of agents. For example, she said that many customers request agents to assist their legal teams in reviewing or redlining contracts. But that’s too open-ended. Instead, a goal-oriented approach means designing an agent to reduce the time spent reviewing and redlining contracts.

“In the traditional software development life cycle, you are designing for a deterministic set of very predictable steps,” Habib said. “It’s input in, input out in a more deterministic way. But with agents, you’re seeking to shape agentic behavior. So you are seeking less of a controlled flow and much more to give context and guide decision-making by the agent.”

Another difference is building a blueprint for agents that instructs them with business logic, rather than providing them with workflows to follow. This includes designing reasoning loops and collaborating with subject experts to map processes that promote desired behaviors.

While there’s a lot of talk about scaling agents, Writer is still helping most clients with building them one at a time. That’s because it’s important first to answer questions about who owns and audits the agent, who makes sure it stays relevant and still checks if it’s still producing desired outcomes.

“There is a scaling cliff that folks get to very, very quickly without a new approach to building and scaling agents,” Habib said. “There is a cliff that folks are going to get to when their organization’s ability to manage agents responsibly really outstrips the pace of development happening department by department.”

QA for agents vs software

Quality assurance is also different for agents. Instead of an objective checklist, agentic evaluation includes accounting for non-binary behavior and assessing how agents act in real-world situations. That’s because failure isn’t always obvious — and not as black and white as checking if something broke. Instead, Habib said it’s better to check if an agent behaved well, asking if fail-safes worked, evaluating outcomes and intent: “The goal here isn’t perfection It is behavioral confidence, because there is a lot of subjectivity in this here.”

Businesses that don’t understand the importance of iteration end up playing “a constant game of tennis that just wears down each side until they don’t want to play anymore,” Habib said. It’s also important for teams to be okay with agents being less than perfect and more about “launching them safely and running fast and iterating over and over and over.”

Despite the challenges, there are examples of AI agents already helping bring in new revenue for enterprise businesses. For example, Habib mentioned a major bank that collaborated with Writer to develop an agent-based system, resulting in a new upsell pipeline worth $600 million by onboarding new customers into multiple product lines.

New version controls for AI agents

Agentic maintenance is also different. Traditional software maintenance involves checking the code when something breaks, but Habib said AI agents require a new kind of version control for everything that can shape behavior. It also requires proper governance and ensuring that agents remain useful over time, rather than incurring unnecessary costs.

Because models don’t map cleanly to AI agents, Habib said maintenance includes checking prompts, model settings, tool schemas and memory configuration. It also means fully tracing executions across inputs, outputs, reasoning steps, tool calls and human interactions. 

“You can update a [large language model] LLM prompt and watch the agent behave completely differently even though nothing in the git history actually changed,” Habib said. “The model links shift, retrieval indexes get updated, tool APIs evolve and suddenly the same prompt does not behave as expected…It can feel like we are debugging ghosts.”

Similar Posts

  • Gridcare thinks more than 100 GW of data center capacity is hiding in the grid

    Hyperscalers and data center developers are in a pickle: They all want to add computing power tomorrow, but utilities frequently play hard to get, citing years-long waits for grid connections.

    “All the AI data centers are struggling to get connected,” Amit Narayan, founder and CEO of Gridcare, told TechCrunch. “They’re so desperate. They are looking for solutions, which may or may not happen. Certainly not in the five-year timelines they cite.”

    That has led many data centers to pursue what’s called “behind the meter” power sources — basically, they build their own power plants, a costly endeavor that hints at just how desperate they are for electricity.

    But Narayan knew there was plenty of slack in the system, even if utilities themselves haven’t discovered it yet. He has studied the grid for the last 15 years, first as a Stanford researcher then as a founder of another company. “How do we create more capacity when everyone thinks that there is no capacity on the grid?” he said.

    Narayan said that Gridcare, which has been operating in stealth, has already discovered several places where extra capacity exists, and it’s ready to play matchmaker between data centers and utilities.

    Gridcare recently closed an oversubscribed $13.5 million seed round, the company told TechCrunch. The round was led by Xora, Temasek’s deep tech venture firm, with participation from Acclimate Ventures, Aina Climate AI Ventures, Breakthrough Energy Discovery, Clearvision, Clocktower Ventures, Overture Ventures, Sherpalo Ventures, and WovenEarth.

    For Narayan and his colleagues at Gridcare, the first step to finding untapped capacity was to map the existing grid. Then the company used generative AI to help forecast what changes might be implemented in the coming years. It also layers on other details, including the availability of fiber optic connections, natural gas, water, extreme weather, permitting, and community sentiment around data center construction and expansion. 

    Techcrunch event

    San Francisco
    |
    October 27-29, 2025

    “There are 200,000-plus scenarios that you have to consider every time you’re running this study,” Narayan said.

    To make sure it’s not running afoul of regulations, Gridcare then takes that data and weighs it against federal guidelines that dictate grid usage. Once it finds a spot, it starts talking with the relevant utility to verify the data.

    “We’ll find out where the maximum bang for the buck is,” Narayan said.

    At the same time, Gridcare works with hyperscalers and data center developers to identify where they are looking to expand operations or build new ones. “They have already told us what they’re willing to do. We know the parameters under which they can operate,” he said.

    That’s when the matchmaking begins.

    Gridcare sells its services to data center developers, charging them a fee based on how many megawatts of capacity the startup can unlock for them. “That fee is significant for us, but it’s negligible for data centers,” Narayan said.

    For some data centers, the price of admission might be forgoing grid power for a few hours here and there, relying on on-site backup power instead. For others, the path might be clearer if their demand helps green-light a new grid-scale battery installation nearby. In the future, the winner might be the developer that is willing to pay more. Utilities have already approached Gridcare inquiring about auctioning access to newfound capacity.

    Regardless of how it happens, Narayan thinks that Gridcare can unlock more than 100 gigawatts of capacity using its approach. “We don’t have to solve nuclear fusion to do this,” he said.

    Update: Corrected spare capacity on the grid to gigawatts from megawatts.

  • RealSense spins out of Intel to scale its stereoscopic imaging technology

    After 14 years of developing inside of semiconductor giant Intel, RealSense is striking out on its own.

    RealSense sells cameras that use stereoscopic imaging, a process that combines two images of the same object from different angles to create depth, enhanced with infrared light. This technology helps machines like robots, drones, and autonomous vehicles have a better perception of the physical world around them. The tech is also used for facial authentication.

    “The common denominator of all of them is they live in the real, physical world,” CEO Nadav Orbach told TechCrunch. “They need to understand the surroundings in 3D and based on that, take and plan actions right in the world. And for that, they need a real-time, high-accuracy ability to understand the surrounding in 3D. And that’s what we do best.”

    Orbach joined Intel back in 2006 as a CPU architect in Israel. He started working on vision technology in 2011 before becoming the general manager of incubation and disruptive innovation in 2022 and moving to San Francisco last year.

    “We knew and understood that 3D perception was going to be big,” Orbach said about the early days of RealSense. “To be honest, we weren’t quite sure in which domain. We tried that across different market segments and different applications, all the way from gesture recognition with computers, phones, until we really found our sweet spot over the years, mostly in robotics.”

    The company works with numerous industries outside of robotics, too. Orbach said they’ve heard from fish farms looking to track the volume inside their pens. Chipotle has also used RealSense cameras, in a partnership with AI restaurant software company PreciTaste, to track when food containers are low.

    RealSense has more than 3,000 customers and has seen a surge in new interest over the last three to four years as AI has improved. With that, the applications for robotics, especially, have scaled.

    Techcrunch event

    Boston, MA
    |
    July 15

    The company realized it may have a better chance keeping up with demand — and scaling itself — if it spun out of Intel and raised its own capital, Orbach said.

    The spinout plans hatched last year and got the approval from former Intel CEO Pat Gelsinger. The company is now independent and raised a $50 million Series A funding round from Intel Capital and other strategic investors to get started on its own.

    “For me, it was exciting, to be honest,” Orbach said. “I’m a veteran executive in the company, but it’s first time that I’m, you know, I was on the other side of the table. It was a very humbling experience for me as a first-time CEO to go and and raise money.”

    RealSense will put the capital toward building out its go-to-market team and making improvements to its technology. The company is particularly focused on improving the tech so it can help improve safety during humans and robot interactions and to improve access control.

    “There is a learning curve of, you know, stepping out,” Orbach said. “I’m extremely excited about that. I’m fortunate to have a very strong team with a lot of people in my team that that have entrepreneurial experience. I feel that with my background, together with with some strong teammates, I think we have the right mix for success. And for me, it’s a dream coming true.”

  • Walmart cracks enterprise AI at scale: Thousands of use cases, one framework

    Join the event trusted by enterprise leaders for nearly two decades. VB Transform brings together the people building real enterprise AI strategy. Learn more Walmart continues to make strides in cracking the code on deploying agentic AI at enterprise scale. Their secret? Treating trust as an engineering requirement, not some compliance checkbox you tick at the…

  • America’s AI watchdog is losing its bite

    Most Americans encounter the Federal Trade Commission only if they’ve been scammed: It handles identity theft, fraud, and stolen data. During the Biden administration, the agency went after AI companies for scamming customers with deceptive advertising or harming people by selling irresponsible technologies. With yesterday’s announcement of President Trump’s AI Action Plan, that era may now be over.  In the final months of the Biden administration under chair Lina Khan, the FTC levied a series of high-profile fines and actions against AI companies for overhyping their technology and bending the truth—or in some cases making claims that were entirely false. It found that the security giant Evolv lied about the accuracy of its AI-powered security checkpoints, which are used in stadiums and schools but failed to catch a seven-inch knife that was ultimately used to stab a student. It went after the facial recognition company Intellivision, saying the company made unfounded claims that its tools operated without gender or racial bias. It fined startups promising bogus “AI lawyer” services and one that sold fake product reviews generated with AI. These actions did not result in fines that crippled the companies, but they did stop them from making false statements and offered customers ways to recover their money or get out of contracts. In each case, the FTC found, everyday people had been harmed by AI companies that let their technologies run amok.
    The plan released by the Trump administration yesterday suggests it believes these actions went too far. In a section about removing “red tape and onerous regulation,” the White House says it will review all FTC actions taken under the Biden administration “to ensure that they do not advance theories of liability that unduly burden AI innovation.” In the same section, the White House says it will withhold AI-related federal funding from states with “burdensome” regulations. This move by the Trump administration is the latest in its evolving attack on the agency, which provides a significant route of redress for people harmed by AI in the US. It’s likely to result in faster deployment of AI with fewer checks on accuracy, fairness, or consumer harm.
    Under Khan, a Biden appointee, the FTC found fans in unexpected places. Progressives called for it to break up monopolistic behavior in Big Tech, but some in Trump’s orbit, including Vice President JD Vance, also supported Khan in her fights against tech elites, albeit for the different goal of ending their supposed censorship of conservative speech.  But in January, with Khan out and Trump back in the White House, this dynamic all but collapsed. Trump released an executive order in February promising to “rein in” independent agencies like the FTC that wage influence without consulting the president. The next month, he started taking that vow to—and past—its legal limits. In March, he fired the only two Democratic commissioners at the FTC. On July 17 a federal court ruled that one of those firings, of commissioner Rebecca Slaughter, was illegal given the independence of the agency, which restored Slaughter to her position (the other fired commissioner, Alvaro Bedoya, opted to resign rather than battle the dismissal in court, so his case was dismissed). Slaughter now serves as the sole Democrat. In naming the FTC in its action plan, the White House now goes a step further, painting the agency’s actions as a major obstacle to US victory in the “arms race” to develop better AI more quickly than China. It promises not just to change the agency’s tack moving forward, but to review and perhaps even repeal AI-related sanctions it has imposed in the past four years. How might this play out? Leah Frazier, who worked at the FTC for 17 years before leaving in May and served as an advisor to Khan, says it’s helpful to think about the agency’s actions against AI companies as falling into two areas, each with very different levels of support across political lines.  The first is about cases of deception, where AI companies mislead consumers. Consider the case of Evolv, or a recent case announced in April where the FTC alleges that a company called Workado, which offers a tool to detect whether something was written with AI, doesn’t have the evidence to back up its claims. Deception cases enjoyed fairly bipartisan support during her tenure, Frazier says. “Then there are cases about responsible use of AI, and those did not seem to enjoy too much popular support,” adds Frazier, who now directs the Digital Justice Initiative at the Lawyers’ Committee for Civil Rights Under Law. These cases don’t allege deception; rather, they charge that companies have deployed AI in a way that harms people. The most serious of these, which resulted in perhaps the most significant AI-related action ever taken by the FTC and was investigated by Frazier, was announced in 2023. The FTC banned Rite Aid from using AI facial recognition in its stores after it found the technology falsely flagged people, particularly women and people of color, as shoplifters. “Acting on false positive alerts,” the FTC wrote, Rite Aid’s employees “followed consumers around its stores, searched them, ordered them to leave, [and] called the police to confront or remove consumers.”

    The FTC found that Rite Aid failed to protect people from these mistakes, did not monitor or test the technology, and did not properly train employees on how to use it. The company was banned from using facial recognition for five years.  This was a big deal. This action went beyond fact-checking the deceptive promises made by AI companies to make Rite Aid liable for how its AI technology harmed consumers. These types of responsible-AI cases are the ones Frazier imagines might disappear in the new FTC, particularly if they involve testing AI models for bias. “There will be fewer, if any, enforcement actions about how companies are deploying AI,” she says. The White House’s broader philosophy toward AI, referred to in the plan, is a “try first” approach that attempts to propel faster AI adoption everywhere from the Pentagon to doctor’s offices. The lack of FTC enforcement that is likely to ensue, Frazier says, “is dangerous for the public.”

  • Web Guide: An experimental AI-organized search results page

    We’re launching Web Guide, a Search Labs experiment that uses AI to intelligently organize the search results page, making it easier to find information and web pages.Web Guide groups web links in helpful ways — like pages related to specific aspects of your query. Under the hood, Web Guide uses a custom version of Gemini to better understand both a search query and content on the web, creating more powerful search capabilities that better surface web pages you may not have previously discovered. Similar to AI Mode, Web Guide uses a query fan-out technique, concurrently issuing multiple related searches to identify the most relevant results.For example, try it for open-ended searches like “how to solo travel in Japan.” Or try detailed queries in multiple sentences like, “My family is spread across multiple time zones. What are the best tools for staying connected and maintaining close relationships despite the distance?”

  • Best Noise-Canceling Headphones: Sony, Bose, Apple, and More

    Honorable MentionsNow that the majority of new headphones and earbuds offer at least a modicum of noise canceling, it’d be impossible (and unproductive) to list everything we like above. If you haven’t yet found your fit, here are more favorites worth considering.Beyerdynamic Amiron 300 for $280: These simple-looking earbuds (8/10, WIRED Recommends) are a great way to experience quiet luxury. They have 10 hours of battery life with noise canceling engaged, and they have some of the best-sounding drivers for vocals I’ve heard in any earbuds.Sony WF-1000XM5 earbuds for $298: Sony’s fifth-generation flagship earbuds (7/10, WIRED Recommends) slim down while stepping up. These buds are smaller and slicker (maybe too slick when it comes to grabbing them) than the previous XM4 buds. As before, they provide great sound and noise canceling that outduels plenty of options, with a cost to match. In true Sony style, they serve up a truckload of adaptive features and EQ controls while retaining a solid eight hours of playback time per charge with ANC and 12 hours without it. —Ryan WaniataSoundcore Life Q30 for $60-85: Anker’s Soundcore line is nothing if not value-conscious, and the Life Q30 provide an embarrassing list of extras for their bargain-basement pricing. You’ll get clear and warm sound, great features, tons of battery life, and noise canceling that gets the job done even on a long flight, though it can’t keep up with flagship pairs. It’s hard to complain when they cost hundreds less, especially with sale pricing that sometimes drops to around $50.Sony WH-1000XM4 for $250-350: Sony’s WH-1000X lineup has produced some of the best noise-canceling headphones for nearly a decade, and the aging WH-1000XM4 (9/10, WIRED Recommends) are no exception. They periodically go on sale for under $300, but it’s getting harder to find them below full price, which is tough for a five-year-old model.Bowers & Wilkins Pi8 Earbuds for $400: Bowers & Wilkins’ Pi8 (8/10, WIRED Recommends) offer a sleek, comfortable design, solid (albeit not Bose-beating) noise canceling, and great sound. Call quality is also excellent, which makes these perhaps the perfect business-class earbuds, though their hefty price won’t appeal to everyone.Bowers and Wilkins PX7 S2e for $400: The Px7 S2e feature upgraded audio quality for fantastic sound in stylish and sophisticated design. They’re also among the most comfortable headphones we’ve tested, but their noise canceling doesn’t rise to the level of the top players for the money.Beyerdynamic Aventho 300 for $400: These over-ears from Beyerdynamic (7/10, WIRED Recommends) have the brand’s classic studio sound, with a tight crisp high range and punchy lows. The downside is that they don’t cancel noise quite as well as models from Sony, Bose, and others above. Still, they sound great and are worth considering, especially if you can snag them on sale.Soundcore Space A40 for $60: Another top value buy from Anker’s Soundcore brand, the Space A40 (8/10, WIRED Recommends) are some of our favorite cheap earbuds, especially as their price continues to fall. You’ll find a classy design, lots of features, quality sound, and great noise canceling for their class.Apple Beats Fit Pro for $199: The Beats Fit Pro are an aging but still knockout pair of wireless buds, with great sound, easy-access physical buttons, and solid noise canceling to boot. Add to that six hours of battery life, spatial audio compatibility with Apple Music and other services, and you’ve got one of the best pairs of earbuds ever “designed in California.”Epos/Sennheiser Adapt 660 for $210: Want excellent sound, a comfortable fit, and high-quality noise-canceling tech for less than what you’d pay for Sony or Bose headphones? Check out this collaboration between Epos and Sennheiser. The Epos/Sennheiser Adapt 660 (8/10, WIRED Recommends) sound fantastic and are some of the lightest noise-canceling headphones I’ve ever worn. They also feature excellent microphones for great silence on calls and Zooms.

Leave a Reply

Your email address will not be published. Required fields are marked *